Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Potential factors affecting the inland penetration and orographic modulation of lake-effect precipitation east of Lake Ontario include the environmental (lake, land, and atmospheric) conditions, mode of the lake-effect system, and orographic processes associated with flow across the downstream Tug Hill Plateau (herein Tug Hill), Black River valley, and Adirondack Mountains (herein Adirondacks). In this study we use data from the KTYX WSR-88D, ERA5 reanalysis, New York State Mesonet, and Ontario Winter Lake-effect Systems (OWLeS) field campaign to examine how these factors influence lake-effect characteristics with emphasis on the region downstream of Tug Hill. During an eight-cool-season (16 November–15 April) study period (2012/13–2019/20), total radar-estimated precipitation during lake-effect periods increased gradually from Lake Ontario to upper Tug Hill and decreased abruptly where the Tug Hill escarpment drops into the Black River valley. The axis of maximum precipitation shifted poleward across the northern Black River valley and into the northwestern Adirondacks. In the western Adirondacks, the heaviest lake-effect snowfall periods featured strong, near-zonal boundary layer flow, a deep boundary layer, and a single precipitation band aligned along the long-lake axis. Airborne profiling radar observations collected during OWLeS IOP10 revealed precipitation enhancement over Tug Hill, spillover and shadowing in the Black River valley where a resonant lee wave was present, and precipitation invigoration over the western Adirondacks. These results illustrate the orographic modulation of inland-penetrating lake-effect systems downstream of Lake Ontario and the factors favoring heavy snowfall over the western Adirondacks. Significance StatementInland penetrating lake-effect storms east of Lake Ontario affect remote rural communities, enable a regional winter-sports economy, and contribute to a snowpack that contributes to runoff and flooding during thaws and rain-on-snow events. In this study we illustrate how the region’s three major geographic features—Tug Hill, the Black River valley, and the western Adirondacks—affect the characteristics of lake-effect precipitation, describe the factors contributing to heavy snowfall over the western Adirondacks, and provide an examples of terrain effects in a lake-effect storm observed with a specially instrumented research aircraft.more » « less
- 
            A prolonged period of winter monsoonal flow brought heavy sea-effect snowfall to the Hokuriku region along the west coast of the Japanese island of Honshu from 2 to 7 February 2010. Snowfall in some locations exceeded 140 cm, but the distribution within the event was highly variable. We examine the factors contributing to these variations using data from a Japan Meteorological Agency (JMA) C-band surveillance radar, JMA soundings, surface precipitation observations, and a Weather Research and Forecasting (WRF) Model simulation. There were three distinct periods during the event. Period 1 featured relatively weak flow with precipitation confined mainly to the coast and lowlands. Precipitation maxima were located where the flow ascended: 1) over terrain-blocked air, 2) at the foot of a high flow-normal barrier, or 3) relatively unimpeded over the lower mountain ranges. Flow strengthened during period 2, yielding stronger vertical velocities over the terrain with precipitation maxima shifting inland and to higher elevation. The flow strengthened further in period 3, with the precipitation maxima shifting higher in elevation and into the lee, with almost no precipitation falling in the lowlands. Thus, greater inland penetration and enhancement of precipitation occurred as the flow speed increased, but additional factors such as the subcloud sublimation of hydrometeors and the convective instability also contribute to differences between periods 2 and 3. These results illustrate the importance of incident flow strength in modulating the distribution and enhancement of snowfall in global lake- and sea-effect regions.more » « less
- 
            Abstract The Hokuriku region along the west coast of the Japanese island of Honshu receives exceptionally heavy snowfall accumulations, exceeding 500 cm from December to February near sea level and 1300 cm at high elevation sites, much of which is produced by sea-effect systems. Though the climatological enhancement of snowfall is large, the lowland–upland snowfall distribution within individual storms is highly variable, presenting a challenge for weather forecasting and climate projections. Utilizing data from a C-band surveillance radar, the ERA5 reanalysis, and surface precipitation observations, we examine factors affecting the inland and orographic enhancement during sea-effect periods in the Hokuriku region during nine winters (December–February) from December 2007 to February 2016. The distribution and intensity of precipitation exhibits strong dependence on flow direction due to three-dimensional terrain effects. For a given flow direction, higher values of boundary layer wind speed and sea-induced CAPE favor higher precipitation rates, a maximum displaced farther inland and higher in elevation, and a larger ratio of upland to lowland precipitation. These characteristics are also well represented by the nondimensional mountain height H^, with H^<1 associated with a precipitation maximum over the high elevations and a larger ratio of upland to lowland precipitation, and H^>1 having the opposite effect. Nevertheless, even in high enhancement periods, precipitation rates decline as one moves inland from the first major mountain barrier, even over high terrain. These results highlight how the interplay between sea-effect and orographic processes modulates the distribution and intensity of precipitation in an area of complex and formidable topography.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
